Archives
Rock and Roll Ice Cream
Food Fun Necklaces
Egg Hunt
Agriculture Mosaic
Make Your Own Lip Salve
For preparation and storage, you’ll also need:
• A small stainless-steel or Pyrex pot you can dedicate to melting the wax. (You may want to use it again to make other balms, salves or ointments.)
• A small wooden spoon or stainless-steel whisk for stirring.
• A small glass jar or other container (e.g., a new or recycled lip-balm tube).
For the basic recipe:
• 1 T shaved or chopped beeswax (or beads).
• 3 T oil (I usually use olive oil, since I have it on hand, but you could use almond, grapeseed, or another oil).
• 1 t raw honey (optional).
• Melt the beeswax with the oil over a low heat (double boiler, inside a low oven) or microwave at low power (under careful observation to avoid fires).
As soon as the wax has melted, remove the pot from the heat, whisk in the honey. Pour into a container and let set until firm. If the solidified mixture feels too firm, remelt and whisk in a little more oil. If you want a firmer product (e.g., one that will fill and push out from a lip-balm tube, add a bit more beeswax). The process of remelting takes only a few seconds, so you won’t mind the work of getting it right.
Once you’ve succeeded with the basic product, you can try new batch using ingredients such as a few drops of a medicinal tincture or an essential oil; cocoa butter, shea butter, or coconut oil for some of the oil; and carnuba wax in place of beeswax. By the way, this stuff also works well to smooth unruly eyebrows, treat chapped hands and moisturize cuticles and fingernails, so you may want to make a bigger batch on your second try.
Extension Activity
Extension Activities
Make an edible topographic map of New York State
- Using different colored layers of Jell-O
- Using peanut butter dough
- Using a New York-shaped cookie
Non-edible options:
- Using salt dough
- Using Delta Foam
Contact a local soil testing lab or your local Natural Resources Conservation Service (NRCS) office to find out what services and resources they provide. They may have posters, soil profiles and soil samples available for you to borrow. NRCS is an outreach service of the USDA providing educational assistance for land owners regarding conservation of soil, water, and other natural resources. You can use the USDA Service Center Locator at: http://offices.sc.egov.usda.gov/ locator/app to contact your local office.
Can you grow your favorite fruit or vegetable here?
Ask students to research the needs (light, temperature, nutrients, etc.) of their favorite fruit or vegetable (the products origin will give clues to what conditions it needs to grow). Determine if it will be possible to grow it in your school garden (i.e. tomatoes), or if the climate could be modified to create the proper conditions (such as growing it in a school greenhouse, e.g. an avocado tree).
Making weather-tracking tools
Visit http://www.kidsgardening.com/Dig/DigDetail.taf?ID=1042&Type=Art to learn how to build a weather station to measure local short-term changes in the weather and track more long-term climate information or attain data from a local weather station (or access NOAA weather information) to determine what will grow there. (This will help explain why we do not produce large quantities of bananas and coconuts in New York State).
Assessment Activity
Assessment Activity
Using clear overhead projector pages create a 4-layered overlay map of New York State indicating landforms, climate information and crop production on top of a base map. What do you notice about the relationships between climate, topography and crop production? Consider how topography and proximity to large bodies of water affects the climate and population distribution.
Garden Activity #1: Soil Investigations
Garden Activity #1: Soil Investigations
Although there are many factors contributing to successful farming operations, any farmer or gardener will tell you one of the most important elements is the soil. The soil is the base for all plant life. In addition to being the anchor matter for the plant roots, it also provides water and nutrients for the plant. Plants grown in good soil will perform better and experience fewer problems with insects and disease.
Soil by definition is made up of sand, silt and clay particles derived from rock broken down over thousands of years by climatic and environmental conditions (rain, glaciers, wind, rivers, animals, etc). Sand particles are defined as particles between 2.00 – 0.05 mm in diameter (USDA) and they feel gritty in your fingers. Silt particles are particles that are between 0.05 – 0.002 mm (USDA) and feel similar to flour. Clay particles are particles smaller than 0.002 mm (USDA) and feel sticky in your fingers when wet and clump to the point that you can not see an individual particle without a microscope. These particles are derived from a number of different types of rock so defining something as sand, silt or clay is about sizing the particles, not determining their original source. The amount of each of these components characterizes your soil. For instance, if you have a lot of sand, your soil will drain quickly and in contrast if you have a lot of clay particles, your soil will often be compact and retain water.
In addition to the sand, silt and clay, you will also find nutrients, organic matter (decaying plant and animal material), and pore space (open space that holds air and water) in soil. These characteristics also impact the growing conditions for your plant. Just like people need vitamins, plants need certain nutrients for proper growth and development. The available nutrients affect plant growth below and above the ground and especially impact fruit production. Organic matter influences nutrient and pore space content. As plants and animals decay they release additional nutrients and create new pore space. The pore space is important to soil structure (the arrangement of the particles in relationship to each other). In an optimal situation about 50 % of the volume of the soil is pore space with half of that filled with water and half filled with air (the other 50% is the sand, silt, clay and organic matter). Roots need air as much as they need water and the plant can actually suffocate or drown if completely emerged in water for extended periods of time.
What is the best kind of soil? Well there is no such thing as the perfect soil, but there is a perfect soil for a particular plant. Each plant likes different conditions. In general, common garden plants prefer a well-draining loam (a soil that is composed of approximately 40 percent sand, 40 percent silt, and 20 percent clay with plenty of organic matter and ample pore space) however there are plants that grow better in sandy conditions and others that grow well in compact, clay soils.
Farmers begin by analyzing their soil and then determine the best crops to grow. Although soil can be amended and improved (adding organic matter is common practice to improve drainage and nutrient content) on a large scale it is best to pick out a crop that will grow well in the soil available to you. With your school farm, you may have more control over the soil you use (especially if you are using container gardens, raised bed gardens or indoor gardens), but the following activities will help you to practice analyzing soils and discussing different soil properties including soil texture, drainage and nutrient content.
For more background information on soil visit:
- NRCS Soil Website: http://soils.usda.gov/
- NASA’s Soil Science Education Home Page: http://soil.gsfc.nasa.gov/index.html
Soil Texture: Soil texture is the way soil feels and it is determined by the amount of sand, silt and clay particles present. Here are two activities to determine the particle make up of your soil. If you are starting an outdoor in-ground or raised-bed garden, try the activities using the soil from the prospective plot.
If you are going to create container gardens or indoor gardens, most likely you will be using a soilless potting mix (these mixes are usually made from peat moss, vermiculate or perlite and are called soilless mixes because they do not include sand, silt or clay), so ask students to bring in soil samples from home or use soil from your playground area.
Ribbon Test: Take a small clump of soil and add water until it makes a moist ball. Next rub the soil together between your fingers. If the soil makes a nice, long ribbon, then it has a lot of clay in it (thus sticks together well). If it crumbles in your hand, then it has a lot of sand. If it is somewhere in between, then you probably have a good mix (a soil with a good mix of all 3 components is called a loam). Although this test does not give you an exact percentage of each component, it provides a general description and it can be used in the field due to the ease of implementation (all you need is a little water).
Shake It Up: Invite students to further explore different soil components by creating “mudshakes” and watching components settle out. For each soil sample, have students fill a clear plastic container about two-thirds full of water, then add enough soil to nearly fill it to the top. Also add a pinch of laundry detergent to help the soil components separate well. Shake the container vigorously then observe it over the next couple of days as the particles settle into layers. Ask students to hypothesize about the composition of the different layers. The larger particles (sand) are heaviest and will settle at the bottom, followed by silt with the last full layer being clay. The clay may stay suspended and cloud the water for a long time. Organic matter will float on or just below the water surface.
Once the container has settled, compare the results to your ribbon test. How do they compare? Measure the height of each layer and than translate that into percentages for each component (height of each component divided by height of the sample). Use the Shake It Up worksheet to help with your evaluation.
Soil Drainage: Soil drainage is a critical factor when determining good crops for a particular site. Although having water available is certainly important, too much water causes the plants to suffocate and also promotes many fungal diseases. Although there are some plants that grow well in boggy soils, most production crops (vegetables, row crops, fruit trees) need good to excellent drainage. Below are two experiments to test the drainage of soil or potting mix for your prospective school farm.
For an Outdoor Garden: Dig a 12-18 inch deep hole in the proposed location for your school farm project (a post hole digger will work well). Fill the hole with water. If the water drains within a few hours, then the drainage is excellent, if it empties within 24 hours, then the drainage is acceptable and if it takes longer than that, then you have poor drainage.
For Indoor, Raised Bed or Container Gardens: Obtain a collection of different types of soils and potting mixes from local garden centers and landscape supply companies. When building raised beds, you usually order garden soil by the truck load from landscape supply companies. Many times the companies will have multiple blends of soil with varying amounts of compost and organic matter for you to choose from. Check to see if they will donate samples of the different types of soil for you to test. Indoor and container gardens usually use soilless potting mixes or garden soil amended with peat moss. A variety of types of potting soils are available at all garden centers.
Fill 6-inch, plastic pots (make sure they have drainage holes) with the different types of soil and potting mixes you were able to obtain. Additionally, fill one pot with sand to use for comparison. Add water to your pots until it emerges from the drainage holes. This is a sign that the soils are completely saturated. Wait 30 minutes to make sure all excess water has drained.
One at a time, hold each pot over a plastic tray or clear plastic bowl (the tray or bowl needs to be able to hold up to 1 cup of water). Measure out 1 cup of water and slowly pour it over each pot of soil. Record the amount of time it takes before water begins to emerge from the drainage holes. Continue to hold the pot over the tray or bowl until it stops dripping and then measure the amount of water in the tray or bowl (pour back into the 1 cup measuring cup).
Use the Drainage Experiment Worksheet to collect the data and ask students to hypothesize what this means about drainage. The faster the water began to drain, the better drainage the soil or potting mix possesses. Also the closer the end water measurement is to the original 1 cup of water, the better the drainage of the soil or potting mix.
Generally you want your soil to hold moisture, but not stay too wet. Based on this information, what soil or mix do they think is best? For further exploration, give the students a chance to feel each pot of soil and record whether or not it feels wet or moist. An additional method to test moisture is available by using a moisture meter which uses sensors to detect water levels (many garden catalogs have these available or you may be able to borrow one from a local gardener).
Nutrient Content: Plants receive nutrients by absorbing them through their roots. The soil nutrients come from decaying plant and animal matter. As they decompose, the nutrients are released into useable form into the soil.
Plants have 6 macronutrients (nutrients they need in large quantities: nitrogen, phosphorus, potassium, sulphur, calcium and magnesium) and 8 micronutrients (nutrients they need in small quantities: iron, zinc, copper, molybdenum, boron, manganese, chlorine and nickel) essential to their growth and development.
Obtain a do-it-yourself soil test kit. These kits are available at local garden stores and from garden catalogs. Using your prospective soil, test the nutrient content of your soil (most kits only test for pH and the big 3 nutrients: nitrogen, phosphorus and potassium). Write the results of each test on the chalkboard.
If you are planting an indoor garden, you can use these tests on your chosen mix too, however some mixes contain slow release fertilizers which will not read properly. For soilless potting mixes, a better option is to check the bag for nutrient content and if you do not find information about it, contact the company for the details. Do not be surprised to find out your soilless mix does not contain any nutrients. Often times this is the case so the grower can have complete control over the amount and timing of nutrients supplied. So if you are using a potting mix, you may want to practice soil testing using a sample from your playground.
What do the results say about your soil’s nutrient content? Does your soil have the nutrients needed for healthy plant growth? Will you need to supplement your soil with additional nutrients through fertilizer or compost?
Do-it-yourself soil kits vary in their accuracy. For more accurate results, obtain a soil test kit from your local Cooperative Extension office or from http://www.css.cornell.edu/soiltest/newindex.asp and send a test sample to the Soil Nutrient Analysis Lab. Share the results with your class and compare to the results from the do-it-yourself kit. How do the results compare? How reliable were the do-it-yourself soil test kits?
For Further Study: The Natural Resources Conservation Service (NRCS) has developed soil surveys which include soil maps and other information for farmers and ranchers to help with land use and management. Originally these surveys were published in hard copy by the U.S. Department of Agriculture and could be obtained from your state or local NRCS office. To ease distribution, these surveys are being added to the NRCS Web site or distributed on CD. Check with your local NRCS office or http://soils.usda.gov/survey/printed_surveys/ to determine the availability of your local soil survey.
Garden Module
Garden Module
To complement the history lessons, your students are going to become farmers through the creation of a school garden (outdoor or indoor) designed to simulate a working farm. The activities revolve around the creation of a ‘farm’ distinguished from a garden by including a focus on producing a marketable crop. The crop you choose can vary, but the exercises look at the garden as a business so students can have a true sense of what it would be like to be a farmer.
Some examples of possible ‘school farm’ garden projects include (but certainly are not limited to):
- Grow salad vegetables like lettuce, carrots and radishes (indoor or outdoor) and then sell fresh produce or host a fundraiser salad party.
- Grow herbs (indoor and outdoor) and turn them into craft projects like potpourri or sachets to sell.
- Produce potted house plants from cuttings (indoor) and sell them for a holiday such as Mother’s Day or Valentine’s Day.
- Grow annual flowers from seed (indoor) and sell the small plants when it is time to transplant them outside.
For more ideas visit: http://www.kidsgardening.com/ themes/business1.asp
Although the opportunity to sell the harvest to other friends, family, teachers and volunteers is a valuable experience and money raised can be used to fund the garden program in future years, if school policy prohibits selling your harvest for money you can also:
- Trade harvest for other goods and services. For instance, students can trade their harvest for a special movie afternoon. The traded harvest could then be given to teachers or other staff in the school. Trading of the harvest can be a good history lesson as many early farmers would trade for materials in addition to selling harvest for money.
- Estimate the value of the crop and then donate to a local senior center or food pantry and receive a receipt for the donation.
- Sell to each other with pretend money. Price your products and then give each student a set amount of ‘money’ they can use to purchase products to take home.
By creating a purpose for the harvest, you introduce your students to the responsibility and pressure real life farmers experience. With a successful crop, they will learn about the excitement and rewards of being a farmer and if your crop fails, they will discover a very valuable lesson – farming is a hard way of life and some times environmental factors are beyond human control. To make sure you experience success, you may choose to ‘diversify’ your farm and choose more than one marketable crop to produce (diversification is another valuable farm life lesson, discuss the saying: “Don’t put all your eggs in one basketL”).
Getting Started: So where do you begin? Begin your school farm project by first receiving approval from all necessary administrators. Discuss your vision with principals or other supervisors and make sure they are on board with your new venture.
Once you receive the stamp of approval, focus on creating a support team. Garden programs are usually more work than 1 person can sustain, so to ensure success, enlist other teachers, parents and community volunteers to serve on a planning and advisory committee. Members of this team may take an active role in helping you find supplies, teach lessons and maintain garden areas, or they may serve as a resource for ideas and help with promoting your project to other parents and in the community. Both types of members are vital to garden operations.
Another person to approach early on about your program is the school custodian or janitor. Many teachers note a good relationship with the custodian can be valuable in accessing resources (like storage closets and water sources) and by having an extra set of eyes to help keep on eye on gardens. On the flip side, if a custodian is not involved, you run the risk he/she will feel your garden is creating additional work for them and they may find ways to make your program more difficult (for instance not allowing you access to storage space or by complaining to administrators about the garden mess).
Make sure to contact and involve any one who may have a stake in your program. Another group of potential key supporters are the people who live in the neighborhood around the school. They may be especially helpful for maintenance during vacations and other breaks.
The first task of your new committee is to create a clear set of goals and link the school farm to the curriculum. Once you have a clear set of goals, you need to decide what kind of growing space will best fit your resources. Gardens can either be indoor or outdoor. Your indoor garden options include windowsill gardens, prefabricated Grow Labs or do-it-yourself light tables. Your outdoor options include in ground beds, raised beds and container gardens.
Indoor Gardens: Creating indoor gardens is a good option for schools in locations experiencing long winters and short growing seasons during the school year. The simplest form of indoor gardening is to place plants in front of windows that receive a decent amount of light. Windows that face south and west are best and they usually receive enough light to grow leaf and root vegetables (beets, carrots, lettuce, onions and radishes) and herbs. East and north facing windows do not receive as much light, so they will limit your planting options to mostly houseplants, however, houseplants can be an exciting and rewarding crop. You will need to spend a few days monitoring your window space to determine how much light is available for an indoor garden.
Grow lights (fluorescent tube lights designed to hang low over growing areas) are a more effective way to produce indoor crops. You can purchase prefabricated GrowLabs (the National Gardening Association’s Kids Gardening Store sells a number of different models for schools available at: http://store.yahoo.com/nationalgardening/growlab.html) or you can make your own. With grow lights, you can control the amount of light your plants receive and can expand your crop options to fruit crops like tomatoes and strawberries.
Check out these web links for more information on growing indoor gardens:
NGA’s Indoor Seed Starting FAQ:
http://www.kidsgardening.com/Dig/DigDetail.taf?ID=180&Type=faq
University of Missouri Lighting Indoor Houseplants:
http://muextension.missouri.edu/explore/agguides/hort/g06515.htm
Growing in the Garden — Local Connections:
http://www.extension.iastate.edu/GrowingintheGarden/kids.html
Low-Cost Grow-Light Frame Plans from Cornell University:
http://www.gardening.cornell.edu/factsheets/growlite/index.html
Indoor Gardening Publications from Cornell University:
http://www.gardening.cornell.edu/houseplants/index.html
or check your local library for the books GrowLab®: A Complete Guide to Gardening in the Classroom and GrowLab®: Activities for Growing Minds.
Outdoor Gardens: The traditional outdoor garden is planted in the ground of a school yard. Unless the area has been cultivated before, you will need a tiller to break the compacted soil before you begin planting.
Another option commonly used by schools is to create gardens in raised beds. Raised beds are built by creating 4-sided, framed structures usually 1 to 2 feet high using materials such as rot resistant wood (like cedar), concrete blocks and recycled plastic ‘wood’ and then filling them with soil. Raised beds can be built over soil or on top of concrete or asphalt surfaces. Although raised beds are more expensive than planting directly in the ground, they do offer a number of benefits. You can choose your own soil making them easier to cultivate and eliminating worries about possible toxins such as lead. Raised beds usually have fewer weed and drainage problems. Additionally, they can be designed to be handicap accessible. Also, plants in raised beds are usually more protected from running feet. For more information about raised beds visit: http://www.hort.vt.edu/human/pub426020d.html
Another outdoor option is to plant in containers. Examples of common containers include clay and plastic pots, and large wooden barrels, however, you can use anything that holds soil and has drainage holes. You can even use even an old bathtub. If you experience warm days, but cold nights, you can create an indoor/outdoor garden by growing plants in buckets with handles or pots with wheels and transport plants outdoors during the day and indoors at night. For ideas on planting container gardens visit: http://www.kidsgardening.com/growingideas/projects/feb03/pg1.html
School Garden Tips:
- Start SMALL! Plan for a big garden in choosing your space but start very small. Don’t exhaust the enthusiasm of your students and volunteers by preparing soil and removing weeds on a large area. Let them get excited about the joy of a bountiful, FUN, small garden. Then expand as your confidence and experience increases.
- Involve Your Students. Involve your students in as many of the planning steps as possible. Teachers across the country have discovered that when students are involved in all stages of the process, they are more invested in the project’s success and inspired to care for and respect their schoolyard gardens. The more they can participate in the planning, the more they will feel like ‘farmers.’